Patterned Microstructure Fabrication: Polyelectrolyte Complexes vs Polyelectrolyte Multilayers
نویسندگان
چکیده
Polyelectrolyte complexes (PEC) are formed by mixing the solutions of oppositely charged polyelectrolytes, which were hitherto deemed "impossible" to process, since they are infusible and brittle when dry. Here, we describe the process of fabricating free-standing micro-patterned PEC films containing array of hollow or filled microchambers by one-step casting with small applied pressure and a PDMS mould. These structures are compared with polyelectrolyte multilayers (PEM) thin films having array of hollow microchambers produced from a layer-by-layer self-assembly of the same polyelectrolytes on the same PDMS moulds. PEM microchambers "cap" and "wall" thickness depend on the number of PEM bilayers, while the "cap" and "wall" of the PEC microchambers can be tuned by varying the applied pressure and the type of patterned mould. The proposed PEC production process omits layering approaches currently employed for PEMs, reducing the production time from ~2 days down to 2 hours. The error-free structured PEC area was found to be significantly larger compared to the currently-employed microcontact printing for PEMs. The sensitivity of PEC chambers towards aqueous environments was found to be higher compared to those composed of PEM.
منابع مشابه
Selective depositions on polyelectrolyte multilayers: self-assembled monolayers of m-dPEG acid as molecular template.
This paper describes the fabrication of self-assembled monolayer (SAM) patterns of m-d-poly(ethylene glycol) (m-dPEG) acid molecules onto polyelectrolyte multilayers (PEMs). The patterned SAMs on PEMs were created by ionic interactions using microcontact printing (microCP) technique. The created m-dPEG acid monolayer patterns on PEMs act as resistive templates, and thus further depositions of c...
متن کاملPolyelectrolyte Multilayers on Magnetic Silica as a New Sorbent for the Separation of Trace Silver in the Leaching Solutions of Antibacterial Products and Determination by Flame Atomic Absorption Spectrometry
A novel, magnetic silica sorbent with polyelectrolyte multilayers (PEMs) on its surface was prepared, and was used for Magnetic Solid Phase Extraction (MSPE) of trace A+ via Flame Atomic Absorption Spectrometry (FAAS). The experimental parameters for the MSPE procedure, such as the pH, type, and concentration of eluent, ultrasonic time and effects of co-existing ions wer...
متن کاملDirect transfer of preformed patterned bio-nanocomposite films on polyelectrolyte multilayer templates.
Microarrays containing multiple, nanostructured layers of biological materials would enable high-throughput screening of drug candidates, investigation of protein-mediated cell adhesion, and fabrication of novel biosensors. In this paper, we have examined in detail an approach that allows high-quality microarrays of layered, bionanocomposite films to be deposited on virtually any substrate. The...
متن کاملArrays of lipid bilayers and liposomes on patterned polyelectrolyte templates.
This paper presents novel methods to produce arrays of lipid bilayers and liposomes on patterned polyelectrolyte multilayers. We created the arrays by exposing patterns of poly(dimethyldiallylammonium chloride) (PDAC), polyethylene glycol (m-dPEG) acid, and poly(allylamine hydrochloride) (PAH) on polyelectrolyte multilayers (PEMs) to liposomes of various compositions. The resulting interfaces w...
متن کاملHydrophilic Polyelectrolyte Multilayers Improve the ELISA System: Antibody Enrichment and Blocking Free
In this study, polyelectrolyte multilayers were fabricated on a polystyrene (PS) plate using a Layer-by-Layer (LbL) self-assembly technique. The resulting functional platform showed improved performance compared with conventional enzyme-linked immunosorbent assay (ELISA) systems. Poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) were used as cationic and anionic polyele...
متن کامل